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ABSTRACT
With more and more messages in the form of text and image being
spread on the Internet, multi-modal rumor detection has become
the focus of recent research. However, most of the existing meth-
ods simply concatenate or fuse image features with text features,
which can not fully explore the interaction between modalities.
Meanwhile, they ignore the convergence inconsistency problem
between strong and weak modalities, that is, the dominant rumor
text modality may inhibit the optimization of image modality. In
this paper, we investigate multi-modal rumor detection from a
novel perspective, and propose a Multi-modal Graph Interactive
Network with Adaptive Gradient (MGIN-AG) to solve the problem
of insufficient information mining within and between modalities,
and alleviate the optimization imbalance. Specifically, we first con-
struct fine-grained graph for each rumor text or image to explicitly
capture the relation between text tokens or image patches in uni-
modal. Then, the cross modal interaction graph between text and
image is designed to implicitly mine the text-image interaction,
especially focusing on the consistency and mutual enhancement be-
tween image patches and text tokens. Furthermore, we extract the
embedded text in images as an important supplement to improve
the performance of the model. Finally, a strategy of dynamically
adjusting the model gradient is introduced to alleviate the under
optimization problem of weak modalities in the multi-modal rumor
detection task. Extensive experiments demonstrate the superiority
of our model in comparison with the state-of-the-art baselines.

CCS CONCEPTS
• Computing methodologies → Natural language processing;
Machine learning; • Information systems→World Wide Web.
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1 INTRODUCTION
Since human society entered the Internet era, profound changes
have taken place in the information dissemination mechanism. Es-
pecially with the rapid development of multimedia social platforms
(e.g., Weibo and Twitter), everyone can be the producer, commu-
nicator and receiver of information, which provides convenient
conditions for the breeding and spreading of rumors. Rumors are
good at leading the public’s attention away from facts to disin-
formation. Meanwhile, due to their fast spreading characteristics,
they can easily reach a scale sufficient to dominate public discourse
and change public opinion, which can cause a continuous negative
impact on society. For example, panic selling was triggered in the
US stock market due to fake news about President Obama’s injury
in 2013 [11]. The result of the US presidential election were affected
as public opinion was shaken by virtual bots spreading political
rumors in 2016 [1]. Hence, in the context of the new media era,
how to quickly and effectively identify online rumors has become
a research hotspot.

In the early years, text content was the main manifestation of
rumors, so conventional rumor detection methods mainly focused
on mining rumor text content and used advanced deep learning
technology [14, 20, 34] to obtain high-dimensional feature encod-
ing. However, with the development of multimedia technology,
rumor posts have evolved from a single plain text to a multi-modal
form consisting of text, images and even videos, which makes the
conventional text-oriented models are not competent for the task of
multi-modal rumor detection. Fortunately, the research on rumor
detection using multi-modal information has also made prelimi-
nary progress in recent years. EANN [28] fuses the features of text
and images via simple concatenation operation, and introduces
adversarial learning to enhance feature representation. MCAN [32]
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Breaking news: several city
administrators are insanely robbing
street property worth more than 100

million.

The "news actor" in the Boston
Marathon bombing has been

recognized again! This man was an
American soldier who lost both legs

in Afghanistan.

(a) token-patch relationship (b) rumor image with additional text 

Figure 1: Two multi-modal rumor instances. (a) The framed
patches in the image and the tokens marked in the claim are
regarded as important cues with strong associations. (b) The
rumor image carries important textual information.

extracts spatial-domain and frequency-domain features from im-
ages, and then uses an attention mechanism to fuse image features
and text features at a coarse-grained level. MFAN [37] constructs a
multi-modal heterogeneous graph from a global perspective, and
utilizes graph neural network to encode it for rumor classification.

Although the multi-modal features have been paid more atten-
tion, the existing methods still have the following limitations: (1)
most models simply concatenate text features and image features, or
use coarse-grained fusion strategies, which cannot fully mine effec-
tive information within and between modalities. More specifically,
they often ignore the interactions and long-distance dependencies
between text tokens and image patches that may become evidence
clues, when judging the authenticity of a message (assumed to
consist of only text and images). For example, the “street property”
token marked in bold in Figure 1(a) not only has a dependency on
the “100 million” at the end of the sentence, but also has a strong
correlation with the "nuts cake" patches scattered in the image,
which can be used as important clues. Coarse-grained encoding
and fusion cannot capture the interaction between image patches or
text tokens, and ignore the co-occurrence features or consistencies
between patches and tokens, which are regarded as the important
multi-modal cues to correctly classify rumors. (2) Generally, text
is the main manifestation of rumors, while images are mostly aux-
iliary, which may lead to the rumor detector being dominated by
text features in the training process and inhibit the optimization
of image features, as shown in Figure 2. Hence, it is important to
dynamically adjust the convergence rate of different modalities to
help prevent weak modality from falling into under-optimization.
(3) The text embedded in the rumor image in Figure 1(b) has proved
to be one of the key clues, but how to more effectively fuse the
feature into the rumor detector remains to be investigated.

To address the above challenges, we propose a Multi-modal
Graph Interactive Network with Adaptive Gradient (MGIN-AG) for
multi-modal rumor detection. Specifically, the MGIN-AG frame-
work is mainly composed of three design strategies as follows.
(1) To capture the interaction relations within modalities, we first
construct a graph for each text based on the dependency tree to
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Figure 2: The performance of rumor images and claim texts
from the PHEME dataset in the uni-modal model and fused-
modal model, respectively. The text modality, which is dom-
inant in rumor detection, is not disturbed too much in per-
formance, but the performance of the weak image modality
is degraded after concatenation fusion operation.

mine the dependencies between words. Then, to obtain the rela-
tions between image patches, we construct a fully connected graph,
in which the patches are nodes and the edge weights are deter-
mined by the similarity between patches. Furthermore, to learn
the long-distance dependencies between modalities, we explicitly
connect the above image patches with text tokens to construct a
cross-modality heterogeneous graph, and design an attention ag-
gregation layer to calculate and analyze the implicit consistency
between modalities. Finally, the text modality graph, image modal-
ity graph and cross-modality graph are fed to the Graph Network
[10] to obtain three different hierarchical graph representations. (2)
The embedded text in the image is one of the important clues, which
is extracted by OCR technology. We use the self-attention mecha-
nism to learn the interaction between words in the embedded text,
and also design a claim-guided co-attention mechanism to choose
which words are more important for rumor classification. (3) To
ensure that the features of different modalities in MGIN-AG can be
well optimized, we extend the dual-modal mechanism in OGM [17]
into a multi-modal mechanism, named MOE, which can adaptively
adjust the corresponding gradients according to the convergence
rate between different modules of the model. Our contributions are
summarized as follows.

• We propose a fine-grained multi-modal graph interaction
network for multimedia rumor detection, which can not only
explicitly learn the dependencies between text tokens and
image patches from the graph perspective, but also implicitly
mine interactions between different modalities, especially
the consistency and mutual enhancement.

• We introduce a gradient adjustment strategy to balance the
optimization process of different modalities, while the em-
bedded text in images is more effectively fused into the rumor
detector, thereby improving the model competitiveness.

• We experimentally demonstrate that our model outperforms
state-of-the-art baselines on real-world datasets.

2 BACKGROUND
2.1 Problem Definition
Multi-modal rumor detection is defined as a classification problem,
whose purpose is to learn a classifier from a set of labeled training
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posts (where each post consists of an image and a text), and then
use it to predict the label of the test posts in this paper. Specifically,
given a multi-media post 𝑃 = {𝐼 ,𝐶,𝑇 } which consists of the image
𝐼 , claim𝐶 and embedded text𝑇 extracted from the image 𝐼 , the goal
is to learn a model f(·) to classify the post 𝑃 into the ground-truth
label 𝑦 ∈ {0, 1}, where 0 denotes rumor, and 1 denotes non-rumor.

2.2 Related Work
Most of the popular rumor detection models rely on deep learn-
ing technology and focus on extracting and analyzing rumor text
features. Many previous studies mainly used neural network en-
coders such as RNN or CNN directly to generate high-dimensional
representations of claims for training and rumor classification [12–
14, 16, 31, 34]. With the popularity of pre-trained models, BERT-
based methods are becoming mainstream [5, 6, 23]. For example,
Dun et al. [5] introduced BERT as the text encoder and used self-
attention mechanism to capture the relations between knowledge
entities and claimwords. In addition, some studies attempted to inte-
grate text information with other rumor clues to improve detection
accuracy, such as comment information [23, 31, 33], conversational
structure [2, 13, 25, 35] and user stance [15, 18, 30].

With the development of multimedia technology, text-oriented
methods obviously cannot be applied to identify the authentic-
ity of multimedia posts composed of text, images or even videos.
Hence, Wang et al. [28] proposed a multi-modal rumor detection
framework in which image features encoded by VGG-19 are simply
concatenated with text features for rumor classification. Khattar
et al. [9] added decoders on the basis of [28] to improve the quality
of multi-modal representation. However, the direct concatenation
operation cannot effectively learn multi-modal mutual interaction
and enhancement. To address this problem, cross-modal attention
mechanisms are widely exploited. Qian et al. [20] designed a multi-
modal contextual attention network that can mine hierarchical se-
mantic relations while modeling multi-modal information. Wu et al.
[32] extracted the spatial-domain and frequency-domain features
from images and the textual features from text, respectively, which
are fused to obtain multi-modal features via multiple co-attention
modules. Graph neural networks are also used to aggregate in-
formation of different modal nodes. For example, Wang et al. [29]
jointly modeled textual information, knowledge concepts and visual
information, and adopted simple graph convolution for encoding.
Zheng et al. [37] introduced the graphical social context feature to
improve model performance.

In addition to the improvement of multi-modal fusion strategies,
there are some studies focusing on the inconsistency of image-text.
Sun et al. [22] employed the orthogonal constraint to obtain multi-
modal shared embedding and unique embedding to measure the
inconsistency between modalities. Qi et al. [19] proposed an entity
inconsistency framework, in which the similarity between image
entities and text entities is used as the cue for classifying rumors.

The uniqueness of our work is that, we constructs fine-grained
graphs for images and text, respectively for mining in-modal and
cross-modal feature interactions (intuitively, we believe that our
approach can implicitly learn multi-modal mutual enhancement
and consistency), while an adaptive gradient adjustment strategy
is employed to promote feature learning.

3 METHOD
3.1 Model Overview
In this section, we describe in detail our proposed Multi-modal
Graph Interactive Network with Adaptive Gradient (MGIN-AG) for
multi-modal rumor detection. As shown in Figure 3, the architec-
ture of MGIN-AG mainly consists of five modules: a) Image-graph
representation, which first constructs a fully connected graph for
the image split into multiple patches, and then jointly employs
a pre-trained Visual Transformer (ViT) [4] and Graph Convolu-
tional Networks (GCN) [10] to obtain the graph representation. b)
Claim-graph representation, which first uses Bidirectional Encoder
Representations from Transformers (BERT) [3] to encode claim
tokens, then constructs a graph for the claim based on the depen-
dencies between words, and finally uses GCN to obtain the graph
representation. c) Cross-modality graph representation, which con-
structs a cross-modality graph with image patches and text tokens
as nodes, and utilizes the Graph Attention Aggregation (GAA) layer
to obtain fused interaction features. d) Embedded text representation,
which employs two attention mechanisms to capture features. e)
Rumor classification. A gradient adjustment strategy is introduced
to assist weak modules in generating better feature representations.

3.2 Image-Graph Representation
Just as there are grammatical relations between words in text, the
mining of associations between image patches should also be paid
attention to, as shown in Figure 1(a). Hence we explicitly concate-
nate image patches and used ViT and GCN to aggregate features.
Specifically, given an image 𝐼 , we first resize the image to 224× 224,
and split it into 𝑚 = 𝑘 × 𝑘 patches1 to obtain a patch sequence
𝑣 = {𝑝𝑖 }𝑚𝑖=1. Then the sequence 𝑣 is fed into the pre-trained ViT
model to obtain an image feature matrix 𝑋𝑉 ∈ R(𝑚+1)×𝑑𝑣

.

𝑋𝑉 = {𝑥𝑣1 , 𝑥
𝑣
2 , 𝑥

𝑣
3 , ..., 𝑥

𝑣
𝑚+1} = 𝑉𝑖𝑇 ( [𝑐𝑙𝑎𝑠𝑠]𝑣), (1)

where 𝑥𝑣 is the feature vector corresponding to each patch. To
ensure the unity of all modal dimensions, a linear transformation
is performed on 𝑋𝑉 and obtain 𝑉 ∈ R(𝑚+1)×𝑑ℎ .

𝑉 = {𝑣1, 𝑣2, 𝑣3, ..., 𝑣𝑚+1} = 𝑋𝑉𝑊, (2)

where 𝑊 ∈ R𝑑𝑣×𝑑ℎ is a trainable parameter matrix. Note that,
the special token [𝑐𝑙𝑎𝑠𝑠] will be discarded, and the remaining im-
age patches are utilized to construct the image-modal graph. The
representation 𝑉 is used as the initialization feature of the graph
node.

Next, to capture the interactive features between patches, we
take image patches as nodes and the similarity between patches as
edge weights to construct a homogeneous fully connected graph
for each image, and its adjacency matrix 𝐴𝑉

𝑖,𝑗
is defined as follows.

𝐴𝑉
𝑖,𝑗

=


1 𝑖 𝑓 𝑖 = 𝑗

1 𝑖 𝑓 |𝑖 − 𝑗 | = 1𝑜𝑟 |𝑖 − 𝑗 | = 𝑘
𝑠𝑖𝑚(𝑖, 𝑗) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, (3)

1𝑚 is better set to 9 or 16, because the smaller the patch in our work, the less informa-
tion is covered, which is not conducive to the learning of graph representation.
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Figure 3: Overview of our MGIN-AGmulti-modal rumor detection model. (a) ViT and single-layer GCL are exploited to calculate
the image representation. (b) BERT and two-layers GCLs are used to obtain the claim representation. (c) Interaction between
the image and the text. (d) Extraction and encoding of embedded text in the image. (e) Classification module, where MOE is the
gradient adjustment strategy and ⊕ represents the concatenation operation.

where |·| represents the absolute value calculation, and 𝑠𝑖𝑚(𝑖, 𝑗) is
the cosine similarity. Neighboring image patches are coherent, so
their edge weights are set to 1, while the edge weights between
non-neighboring patches are calculated according to the image
similarity. Subsequently, we employ the graph convolution layer
(GCL) to aggregate the correlation of nodes, that is, node features𝑉
and adjacency matrix𝐴𝑉

𝑖,𝑗
are fed to the single-layer2 GCL to obtain

the corresponding graph representation 𝐻𝑉 ∈ R𝑚×𝑑ℎ as follows.

𝐻𝑉 = 𝜎 (𝐴𝑉𝑉𝑊𝑉 ), (4)

where 𝜎 is an activation function such as the ReLU function. 𝐴𝑉 =

𝐷− 1
2𝐴𝑉

𝑖,𝑗
𝐷− 1

2 is the normalized adjacency matrix, where 𝐷 is the

degree matrix of 𝐴𝑉
𝑖,𝑗
.

Finally, we use the mean-pooling operator (MEAN) and the skip
connection which helps improve training stability to aggregate the
information of 𝐻𝑉 representing the set of node representations. It
is formulated as follows.

ℎ𝑣 = 𝑀𝐸𝐴𝑁 (𝐻𝑉 +𝑉 ), (5)

where ℎ𝑣 ∈ R1×𝑑ℎ is the image-graph representation.

2The depth of the image-modal graph is 1, so we only use single-layer GCL.

3.3 Claim-Graph Representation
Rumor clues may be expressed in multiple words, so we introduce
the dependency tree and jointly employ BERT and GCN to generate
augmented features for claim tokens. Specifically, given a claim
𝐶 containing 𝑛 words, we first split it into a sequence of words
𝑐 = {𝑤𝑖 }𝑛𝑖=1, then utilize the pre-trained BERT to map each word
into a 𝑑𝑐 -dimensional embedding as follows.

𝑋𝐶 = {𝑥𝑐1, 𝑥
𝑐
2, 𝑥

𝑐
3, ..., 𝑥

𝑐
𝑛+2} = 𝐵𝐸𝑅𝑇 ( [𝐶𝐿𝑆]𝑐 [𝑆𝐸𝑃]). (6)

The special tokens [CLS] and [SEP] are discarded, and the remain-
ing word embeddings are fed to a bidirectional LSTM as follows.

𝐶 = {𝑐1, 𝑐2, 𝑐3, ..., 𝑐𝑛} = 𝐿𝑆𝑇𝑀 (𝑋𝐶 ), (7)

where 𝐶 ∈ R𝑛×𝑑ℎ is the feature matrix, which is used in construct-
ing the claim graph.

Next, we construct an undirected graph for each claim based on
the dependency tree 3, which can effectively capture syntactic and
word dependencies in the claim. The adjacency matrix of the claim
graph is defined as follows.

𝐴𝐶
𝑖,𝑗

=


1 𝑖 𝑓 D(𝑤𝑖 ,𝑤 𝑗 )
1 𝑖 𝑓 𝑖 = 𝑗

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, (8)

3In our work, the spaCy toolkit is used to generate dependency trees.
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where D(𝑤𝑖 ,𝑤 𝑗 ) indicates that 𝑤𝑖 and 𝑤 𝑗 have a relation in the
dependency tree. Subsequently, we feed𝐶 and𝐴𝐶

𝑖,𝑗
into a two-layers

GCLs to obtain the corresponding representation 𝐻𝐶 ∈ R𝑛×𝑑ℎ as
follows.

𝐻𝐶
(2) = 𝜎 (𝐴

𝐶𝜎 (𝐴𝐶𝐶𝑊𝐶
(0) )𝑊

𝐶
(1) ), (9)

where 𝜎 is ReLU,𝑊𝐶 is the weight matrix, and 𝐴𝐶 = 𝐷− 1
2𝐴𝐶

𝑖,𝑗
𝐷− 1

2

is the normalized adjacency matrix, where 𝐷 is the degree matrix
of 𝐴𝐶

𝑖,𝑗
. Then MEAN is used to obtain claim-graph representation

ℎ𝑐 ∈ R1×𝑑ℎ , as follows.

ℎ𝑐 = 𝑀𝐸𝐴𝑁 (𝐻𝐶
(2) +𝐶). (10)

3.4 Cross-Modality Graph Representation
The cross-modal interactive relation between images and claims
is important, especially to implicitly capture the consistency and
mutual enhancement between image patches and claim tokens from
a fine-grained perspective, as shown in Figure 1(a). In this section,
we construct a cross-modal graph by using image patches and claim
tokens as nodes, where each node is only connected to nodes with
a different modality from it. For example, for an image patch node
𝑝𝑖 , there will be edges between 𝑝𝑖 and every claim token 𝑤𝑖 , and
the 𝑝𝑖 will not be connected to the remaining image patch nodes.
Note that the self-loop is also not considered. Hence, the adjacency
matrix 𝐴𝑀

𝑖,𝑗
∈ R(𝑚+𝑛)×(𝑚+𝑛) of the cross-modal heterogeneous

graph is defined as follows.

𝐴𝑀
𝑖,𝑗 =

{
1 𝑖 𝑓 (𝑖 > 𝑚, 𝑗 < 𝑚) 𝑜𝑟 (𝑖 < 𝑚, 𝑗 > 𝑚)
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

. (11)

As shown in Figure 3, we take the features of image patches
and claim tokens that have aggregated neighbor information as the
initial representation of cross-modal graph nodes. However, due to
the node heterogeneity, image nodes and claim nodes have different
feature spaces. Therefore, we design a shared linear transformation
matrix 𝑀𝑠ℎ𝑎𝑟𝑒 ∈ R𝑑ℎ×𝑑ℎ to project the image node feature ℎ𝑉

𝑖
∈

R1×𝑑ℎ from 𝐻𝑉 and claim node feature ℎ𝐶
𝑖
∈ R1×𝑑ℎ from 𝐻𝐶 into

the same feature space as follows.

ℎ
′
𝑖 = ℎ𝑖 ·𝑀𝑠ℎ𝑎𝑟𝑒 , (12)

where ℎ
′
𝑖
∈ R1×𝑑ℎ is the projected feature of node 𝑖 . Subsequently,

we design a Graph Attention Aggregation (GAA) layer to capture
the interaction between image patches and claim tokens, where the
signed attention [24] is introduced. Formally, we first calculate the
positive weight coefficient 𝑎𝑖, 𝑗 and negative weight coefficient ˆ𝑎𝑖, 𝑗
between the node 𝑖 and the node 𝑗 , respectively, as follows.

𝑎𝑖, 𝑗 =
𝑒𝑥𝑝 (𝜎 (𝜇𝑇 · [ℎ′

𝑖
∥ℎ′

𝑗
]))∑

𝑢∈N 𝑒𝑥𝑝 (𝜎 (𝜇𝑇 · [ℎ′
𝑖
∥ℎ′

𝑢 ]))
, (13)

and

𝑎𝑖, 𝑗 = −
𝑒𝑥𝑝 (−𝜎 (𝜇𝑇 · [ℎ′

𝑖
∥ℎ′

𝑗
]))∑

𝑢∈N 𝑒𝑥𝑝 (−𝜎 (𝜇𝑇 · [ℎ′
𝑖
∥ℎ′

𝑢 ]))
, (14)

whereN denotes the neighbors of the node 𝑖 , and 𝜇 is the attention
vector. The signed attention is often used in rumor detection based
on conversational threads. In our work, it is used to capture the
mutual interaction between modalities from multiple perspectives.
In other words, the signed attention can use the positive 𝑎𝑖, 𝑗 and
the negative 𝑎𝑖, 𝑗 respectively to indicate whether the connected
the neighbor node 𝑗 supports or opposes the current node 𝑖 . Then,
the embedding of the node 𝑖 can be aggregated by the neighbor’s
features with the corresponding weight coefficients as follows.

𝑧𝑖 =
𝐻

∥
ℎ=1

𝜎 ( [(
∑︁

𝑗∈N 𝑎𝑖, 𝑗 · ℎ
′
𝑗 )∥(

∑︁
𝑗∈N 𝑎𝑖, 𝑗 · ℎ

′
𝑗 )]), (15)

where 𝑧𝑖 is the learned feature of the node 𝑖 , and 𝐻 is an adjustable
hyperparameter. The feature aggregation process of other nodes
is similar. Finally, we get the image patch and claim token feature
matrix 𝐻𝑉 = {𝑧𝑣1, 𝑧

𝑣
2, ..., 𝑧

𝑣
𝑚} and 𝐻𝐶 = {𝑧𝑐1, 𝑧

𝑐
2, ..., 𝑧

𝑐
𝑛} after interac-

tion, respectively, and use MEAN (similar to Eq. 5) to obtain the
cross-modality image and claim representations ℎ̂𝑣 and ℎ̂𝑐 .

3.5 Embedded Text Representation
Embedded text on the image has been proved to be one of the
important clues to classify rumors. However, how to incorporate
its features into the model remains to be studied. In this paper, we
employ self-attention (SA) [26] and guided-attention (GA) to better
learn the representation of the embedded text. Specifically, We first
use OCR 4 technology to extract embedded text from each image.
Then, given a piece of embedded text 𝑡 = {𝑤 ′

𝑖
}𝑧
𝑖=1, each word 𝑤

′
𝑖

is projected into a word embedding 𝑥𝑡
𝑖
via BERT embedding layer.

Next, we feed them to a linear layer for dimension unification and
obtain a feature matrix 𝑇 = {𝑡1, 𝑡2, ..., 𝑡𝑧 }. To learn the interaction
between words in the text, we use SA to process the input 𝑇 as
follows.

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾,𝑉 ) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑄𝐾
𝑇√︁
𝑑𝑘

)𝑉 , (16)

where 𝑄 = 𝐾 = 𝑉 = 𝑇 , and 𝑑𝑘 is the their dimension. In addition,
the formalization of multi-head SA is as follows.

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑 (𝑄,𝐾,𝑉 ) = 𝐶𝑜𝑛𝑐𝑎𝑡 (𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛1, ..., 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝐻 ′ ), (17)

where 𝐻
′
is the number of heads. Since not all embedded texts are

useful for classification, we propose a claim-guided GA layer that
can measure the importance of each word in the embedded text
according to the claim. Its calculation process is similar to Eq. 16,
but𝑄 = 𝐶 and 𝐾 = 𝑉 = 𝑇 . Finally, we can obtain the representation
ℎ𝑡 of the embedded text.

3.6 Rumor Classification
Now, we have obtained the image-graph representation ℎ𝑣 , claim-
graph representation ℎ𝑐 , embedded text representation ℎ𝑡 , cross-
modality image representation ℎ̂𝑣 , and cross-modality claim repre-
sentation ℎ̂𝑐 . Then, we concatenate them to merge the information
as follows.

4Baidu API is used: https://ai.baidu.com/tech/ocr/
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ℎ𝑜 = 𝑐𝑜𝑛𝑐𝑎𝑡 (ℎ𝑐 , ℎ𝑣, ℎ𝑡 , ℎ̂𝑣, ℎ̂𝑐 ) . (18)
Next, ℎ𝑜 is fed into the full-connection layer and a softmax layer,

and the output is calculated as follows.

𝑦 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑊 𝐹ℎ𝑜 + 𝑏𝐹 ), (19)
where 𝑦 is the predicted probability distribution.𝑊 𝐹 and 𝑏𝐹 are
the trainable weight matrix and bias respectively. Finally, we use
stochastic gradient descent to minimize the cross-entropy loss for
model training.

3.7 MOE Training Strategy
Our proposed framework mainly consists of four modules for learn-
ing representations, including image representation, claim represen-
tation, embedded text representation, and cross-modal interaction
modules. Then, the features generated by these modules are con-
catenated to obtain a final vector ℎ𝑜 for classification. However,
the parameter optimization process in different modules may af-
fect each other as shown in Figure 2. Wang et al. [27] found that
different modalities have different convergence speeds during train-
ing, and the dominant modality may inhibit the optimization of
the weak modality. Peng et al. [17] proposed the OGM method
to alleviate the optimization imbalance caused by joint training of
dual-modal (vision and audio). It is not feasible to directly introduce
the OGM method into our framework, because it only considers
two modalities visual and audio, while our modules can be regarded
as five modalities in different spaces. Hence, we start with OGM
and then design a dynamic gradient adjustment strategy MOE for
the multi-modal rumor detection task to balance the optimization
process of each module in the proposed framework.

Specifically, we first calculate the contribution score of each
module to the optimization objective as follows.

𝑠𝑐𝑜𝑟𝑒
𝑔

𝑖
=

𝐶∑︁
𝑐=1

1𝑐=𝑦𝑖 · 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑊 𝑔ℎ
𝑔

𝑖
+ 𝑏
𝑛
)𝑐 , (20)

where 𝑔 ∈ {𝑣, 𝑐, 𝑡, 𝑣, 𝑐} and 𝑠𝑐𝑜𝑟𝑒𝑔 represents the contribution score
of each module. 𝑛 = 5 is the number of representations, and𝑊 𝑔

and 𝑏 are extracted from the weight and bias in the classification
layer. 𝐶 is the number of label categories. 𝑦𝑖 is the ground-truth of
ℎ𝑖 , and only positive results are summed. Then, we calculate the
contribution discrepancy ratio 𝜌𝑔 of different modules as follow.

𝜌𝑔 =

∑
𝑖∈𝐵 𝑠𝑜𝑐𝑟𝑒

𝑔

𝑖∑
𝑞∈𝑣,𝑐,𝑡,𝑣,𝑐

∑
𝑖∈𝐵 𝑠𝑜𝑐𝑟𝑒

𝑞

𝑖
/𝑛
, (21)

where 𝐵 is a random mini-batch. Next, we construct a gradient
adjustment factor 𝑘𝑔 as follows.

𝑘𝑔 =

{
1 − 𝑡𝑎𝑛ℎ(𝛼 · 𝜌𝑔) 𝑖 𝑓 𝜌𝑔 > 1
1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, (22)

where 𝛼 is a temperature parameter. Finally, following [17], we inte-
grate 𝑘𝑔 into the SGD optimization algorithm and add the randomly
sampled Gaussian noise. It should be noted that the modules in our
framework are all independent, where the module (c) in Figure 3
only uses image and claim graph representations but the gradient
back-propagation is not performed.

Table 1: Statistics of the datasets

Statistic Weibo PHEME
# source tweets 9528 1198

# rumors 4749 599
# non-rumors 4779 599

# images 9528 1198
# ocr text 9227 827

4 EXPERIMENTATION
In this section, we evaluate our proposed MGIN-AG comparing it
with SOTA benchmarks, and give some discussion and analysis.
Moreover, we perform ablation analysis to verify the effectiveness
of each module of MGIN-AG in turn.

4.1 Datasets
We evaluate MGIN-AG on two public real-world datasets: English
PHEME [21] and Chinese Weibo [7], which are collected from the
most influential social media sites, Twitter and Weibo, respectively.
They all contains only two types of tags: Rumor (R) and Non-Rumor
(N), which is used for the binary classification of rumors and non-
rumors. We extract the images corresponding to each source text
in PHEME from Twitter. To match our proposed framework, only
the first image is retained. In addition, we remove samples that
do not contain images, while balancing the number of categories.
Finally, we use OCR technology to extract the embedded text from
PHEME and Weibo images as one of the model input. Table 1 show
the statistics of the resulting two datasets after removal.

4.2 Implementation Details
OurMGIN-AG is implemented by PyTorch [8]. For PHEME, because
of its small amount of data, we follow [2] and randomly split the
dataset into five parts to preform 5-fold cross-validation to obtain
more stable and accurate experimental results. In addition, the batch
size is set to 32, the learning rate is initialized to 1e-3 and gradually
decreases during training according to the decay rate of 1e-4. The
𝛼 in Eq. 22 is set to 0.2. For Weibo, we split the datasets for training,
validation, and testing with a ratio of 6:2:2. Meanwhile, the batch
size is set to 8, and the hyperparameter 𝛼 is set to 0.6. To prevent
overfitting, the early stopping strategy is introduced. Then, the SGD
is adopted to optimize our objective function. Finally, the Accuracy
(Acc.), Precision (Prec.), Recall (Rec.) and 𝐹1-measure (𝐹1) are used
as evaluation metrics in the two datasets.

4.3 Baselines
It’s worth noting that our MGIN-AG does not use the reply in-
formation, which can act as real-time and early rumor detection.
Compared with those models [23, 36, 37] heavily relying on reply
information and lacking real-time capability, our MGIN-AG can
detect rumor when users post messages and does not need to wait
for user’s reply information. For fair comparison, we only compare
our MGIN-AG with the following state-of-the-art baselines, which
do not need reply information, as follow.

321



Graph Interactive Network with Adaptive Gradient for Multi-Modal Rumor Detection ICMR ’23, June 12–15, 2023, Thessaloniki, Greece

• ViT [4] is a recently popular visual encoder, and its model
architecture is almost exactly the same as Transformer in
natural language processing.

• BERT [3] is currently the most popular pretrained language
representation model.

• EANN [28] is a multi-modal rumor classifier, in which VGG-
19 and Text-CNN are used to encode visual and text infor-
mation respectively.

• MVAE [9] is a multi-modal variational autoencoder that can
effectively learn shared representations between images and
text.

• HMCAN [20] is the state-of-the-art method, which extracts
multi-modal high-order complementary information and
hierarchical semantics of text by designing a hierarchical
multi-modal contextual attention network.

Among them, ViT and BERT are single-modal methods, where
ViT only considers image information, and BERT only considers
text information. The other baselines are multi-modal models that
consider both images and text.

4.4 Results and Discussion
Tables 2 and 3 show the performance of all baselines on two datasets
Weibo and Pheme, where the bold part represents the best perfor-
mance. We can observe that our MGIN-AG significantly outper-
forms all the baselines. Unsurprisingly, the ViT model, which only
considers visual features, gets the worst results, mainly because
rumor detection is a claim-dominated classification task. Hence, the
performance of the BERT model with claim information as input
is much better than that of ViT. Both EANN and MVAE are simple
multi-modal detection frameworks, among which MVAE improves
the quality of representation by introducing variational autoen-
coders, so its performance is better than EANN. However, due to
the weak encoder of MVAE, its prediction accuracy is inferior to
the pre-trained BERT.

HMCAN is the BERT-based method, which is the state-of-the-art
benchmark used to verify the superiority of ourMGIN-AG. HMCAN
designs a multi-modal contextual attention layer and a contextual
transformer to learn the correlation coefficient between images and
claims, which show excellent performance.

Our MGIN-AG beats all benchmarks, and its superiority stems
from three reasons as follows. 1) The powerful visual encoder ViT
and textual encoder BERT can generate higher quality represen-
tations. Meanwhile, we construct in-modal graphs for images and
claims separately, which can effectively learn the dependencies
between image patches or claim tokens from a fine-grained per-
spective. To emphasize the importance of the original features and
stabilize the model training, we also fuse the original features with
the aggregated features through skip connections, as shown in Eq.
5 and 10. Finally, to mine the cross-modal interactions, we construct
a cross-modal heterogeneous graph with image patches and claim
tokens as nodes, and design a GAA layer to aggregate features.
The uni-modal features and multi-modal features are concatenated,
which can provide richer clues for the rumor classification task. 2)
We take advantage of the embedded text information. Using OCR
technology, we extract the text content first, and then design the SA

Table 2: The performance of MGIN-AG and baselines on Chi-
nese Weibo where R and N refer to Rumor and Non-rumor.

Weibo
Method Class Acc. Prec. Rec. 𝐹1

ViT R 0.684 0.669 0.665 0.641
N 0.673 0.684 0.658

BERT R 0.911 0.919 0.883 0.886
N 0.890 0.932 0.899

EANN R 0.818 0.785 0.879 0.821
N 0.860 0.759 0.795

MVAE R 0.851 0.869 0.835 0.840
N 0.842 0.869 0.845

HMCAN R 0.922 0.914 0.914 0.905
N 0.904 0.897 0.891

MGIN-AG R 0.940 0.934 0.941 0.929
N 0.928 0.931 0.922

Table 3: The performance of MGIN-AG and baselines on Eng-
lish Pheme where R and N refer to Rumor and Non-rumor.

PHEME
Method Class Acc. Prec. Rec. 𝐹1

ViT R 0.771 0.760 0.791 0.769
N 0.783 0.757 0.761

BERT R 0.863 0.885 0.857 0.867
N 0.849 0.862 0.851

EANN R 0.776 0.757 0.810 0.776
N 0.796 0.758 0.768

MVAE R 0.833 0.802 0.888 0.839
N 0.888 0.775 0.820

HMCAN R 0.866 0.880 0.849 0.862
N 0.850 0.870 0.858

MGIN-AG R 0.876 0.868 0.889 0.874
N 0.892 0.858 0.870

and GA modules to adaptively filter which word is more important.
3) Our proposed MGIN-AG framework is composed of multiple
independent modules, and adopts the concatenation approach for
modality fusion. However, we can see from Figure 2 that the domi-
nant modality may inhibit the optimization of the weak modality.
Therefore, we propose the MOE strategy on the basis of OGM to
alleviate the possible under-optimization problems of each module
in the framework.

4.5 Ablation Study
To verify the effectiveness of the different modules of MGIN-AG,
we compare it with the following variants:

• w/o V: MGIN-AG without the visual information.
• w/o C: MGIN-AG without the claim, which only relies on
images and embedded text to classify rumors.

• w/o T: MGIN-AG without the embedded text information
from images.
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Table 4: Results of ablation study on the PHEME and Weibo.

Model PHEME Weibo
Acc. 𝐹1 Acc. 𝐹1

MGIN-AG 0.876 0.872 0.940 0.926
w/o V 0.865 0.860 0.936 0.923
w/o C 0.776 0.768 0.844 0.815
w/o T 0.867 0.862 0.920 0.907
w/o CM 0.869 0.867 0.933 0.920
w/o MOE 0.870 0.866 0.927 0.909
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Figure 4: Performance of imagemodality inMGIN andMGIN-
AG, where MGIN removes MOE.

• w/o CM: We remove the interaction module between the
image and the claim.

• w/oMOE: We remove the MOE training strategy, that is, the
MGIN-AG model cannot adaptively adjust the optimization
process of each module.

The experimental results are shown in Table 4 and we can ob-
serve that:

1) Visual information, claim information and embedded text are
all important clues, and their corresponding ablation vari-
ants perform worse than the complete MGIN-AG. It should
be noted that since multi-modal rumor detection is domi-
nated by claims, the performance of the model will decline
significantly when the claim information is not considered.

2) The lack of the interaction module between the image and
the claim will reduce the overall performance of MGIN-AG.
Since the model does not learn the relation between image
patches and claim tokens, and in particular cannot implicitly
mine their mutual enhancement and consistency.

3) The introduction of the MOE strategy helps to improve the
model performance, mainly because it can effectively balance
the optimization speed of different modules in the MGIN-AG
framework. In addition, since the image quality in the Weibo
dataset is better than that in PHEME, that is, Weibo images
cover more information, the MOE strategy is easier to help
the model obtain higher test accuracy in Weibo.

4.6 Modality Optimization Analysis
To further verify whether MOE can help to improve the under-
optimization phenomenon of weak modality in MGIN-AG frame-
work, we demonstrate the performance of image modality in MGIN

(a) Breaking news! It's
illegal to sell dog meat!

(b) They are very poor. The
school children really need
clothes because they are too

poor to afford them.

(c) A drunk man driving a
black Porsche crashed into

a parked school bus. 

Figure 5: Illustration of some typical cases detected by MGIN-
AG.

and MGIN-AG based on the PHEME and Weibo datasets, respec-
tively. It can be observed in Figure 4 that when the MOE training
strategy is adopted, the performance of the image modality is im-
proved in all the training epochs, proving that the introduction of
MOE is beneficial.

4.7 Qualitative Evaluation
To illustrate the effectiveness of our MGIN-AG, we give three rep-
resentative cases, all of which have been successfully classified by
the model. It can be seen that, in Figure 5(a), the image modality
is simple and normal, but the description of the claim is exagger-
ated and suspicious, which provides a useful clue to the model. In
Figure 5(b), the claim looks normal, but the visually striking image
doesn’t match the text. Using attention-grabbing fake images as
illustrations for claims is a common ploy among rumor-makers, but
our model also successfully identifies it. In Figure 5(c), our model
not only encodes some important areas of the image and key en-
tity clue words such as "black Porsche" and "bus" in the claim, but
also measures the interactivity and consistency between them for
multi-modal rumor detection.

5 CONCLUSION
In this paper, we propose a novel multi-modal rumor detection
framework MGIN-AG. First, to learn the correlation between image
patches or claim tokens, we construct two homogeneous in-modal
graphs based on cosine similarity and dependency tree, respectively.
Then, we consider the interaction between the modalities and a
heterogeneous cross-modal graph is constructed in which signed
attention mechanism is used to capture mutual enhancement or
consistency between image patches and claim tokens. Next, the
embedded text in the image is also regarded as one of the important
clues to classify rumors. Finally, the MOE strategy is introduced to
balance the optimization process of modules. Experimental results
on English Pheme and Chinese Weibo show that our MGIN-AG
outperforms the SOTA baselines.
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